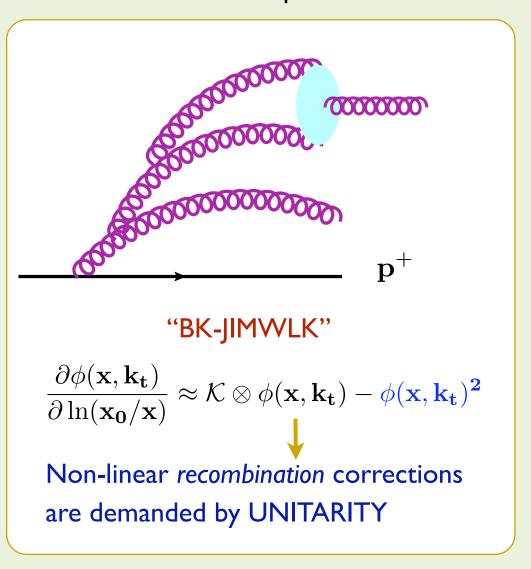
AAMQS: A non-linear QCD analysis of new HERA data at small-x including heavy quarks

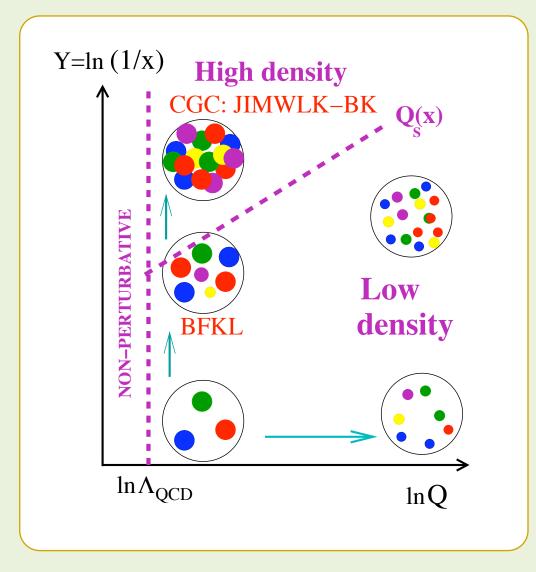
J L Albacete, N. Armesto, G Milhano, P Quiroga and C Salgado

IPhT CEA/Saclay

XIX International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2011)

April 11-15, 2011 Newport News, VA USA

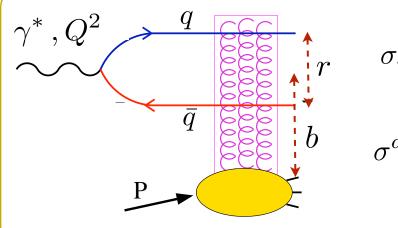

OUTLINE


- → Motivation. Dipole model of DIS
- → Running coupling corrections to BK evolution
- ⇒ Fits to DIS inclusive structure function at small-x
- ⇒ Inclusion of heavy quarks
- ⇒ Conclusions/Outlook

Based on:

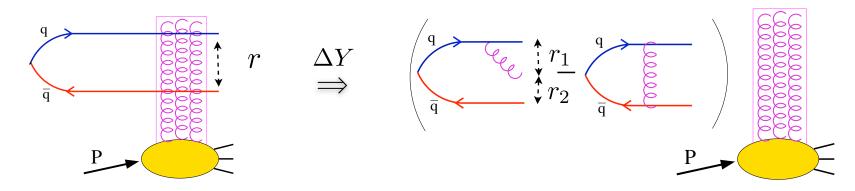
- JLA, N. Armesto, J.G. Milhano P. Quiroga and C. Salgado (arXiv 1012.4408 [hep-ph])
- JLA, N. Armesto, J.G. Milhano and C. Salgado (arXiv 1209.1112 [hep-ph])
- JLA PRL99:262301
- JLA and Y. Kovchegov PRD75:125021

⇒ Saturation: At small Bjorken-x the hadron wave function gets dense and non-linear processes become a relevant dynamical ingredient



→ To what extent are such effects present in available e+p data?

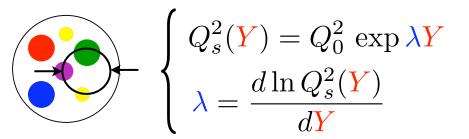
Dipole model of DIS


- ⇒ Dipole models including saturation describe a large amount of HERA data (inclusive and longitudinal structure functions, diffraction, DVCS,VM, geometric scaling..).
- \Rightarrow They provide insight in the region "forbidden" to DGLAP (Q²<2 GeV²).

$$\sigma_{T,L}^{\gamma^*P}(x,Q^2) = \int_0^1 dz \int d^2\mathbf{r} \left| \Psi_{T,L}^{\gamma^* \to q\bar{q}}(z,Q,r) \right|^2 \sigma^{dip}(x,r)$$

$$\sigma^{dip}(x,r)=2\int d^2b\,\mathcal{N}(x,b,r) \xrightarrow{\mbox{Dipole cross section.}} \mbox{Strong interactions and} \\ \mbox{x-dependence are here}$$

⇒ pQCD tools: The non-linear Balitsky-Kovchegov eqn. describes the small-x evolution of the dipole scattering amplitude at leading order in $\alpha_s \ln(1/x)$


$$\frac{\partial \mathcal{N}(x,r)}{\partial \ln(x_0/x)} = \int d^2r_1 K^{LO}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) \left[\mathcal{N}(x,r_1) + \mathcal{N}(x,r_2) - \mathcal{N}(x,r) - \mathcal{N}(x,r_1) \mathcal{N}(x,r_2) \right]$$

The LL kernel:
$$K^{L0}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) = \frac{\alpha_s N_c}{2 \pi^2} \frac{r^2}{r_1^2 r_2^2}$$

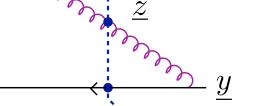
Non-linear term

⇒ However, at LL accuracy (fixed coupling) the BK equation is not compatible with

data

Fits to HERA and RHIC data

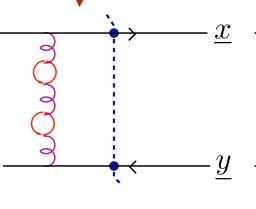
$$\lambda \sim 0.2 \div 0.3$$

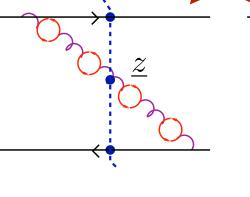

LL-BK (fixed coupling)

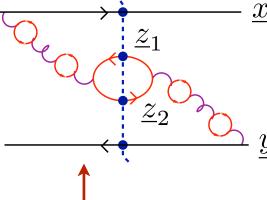
$$\lambda \sim 0.2 \div 0.3$$
 $\lambda^{LL} \sim 4.8 \,\alpha_s$

Running coupling corrections (Kovchegov-Weigert, Balitsky, Gardi et al)

Strategy: resummation of quark loops to all orders, plus $\,N_f\,\longrightarrow\,-6\pieta$

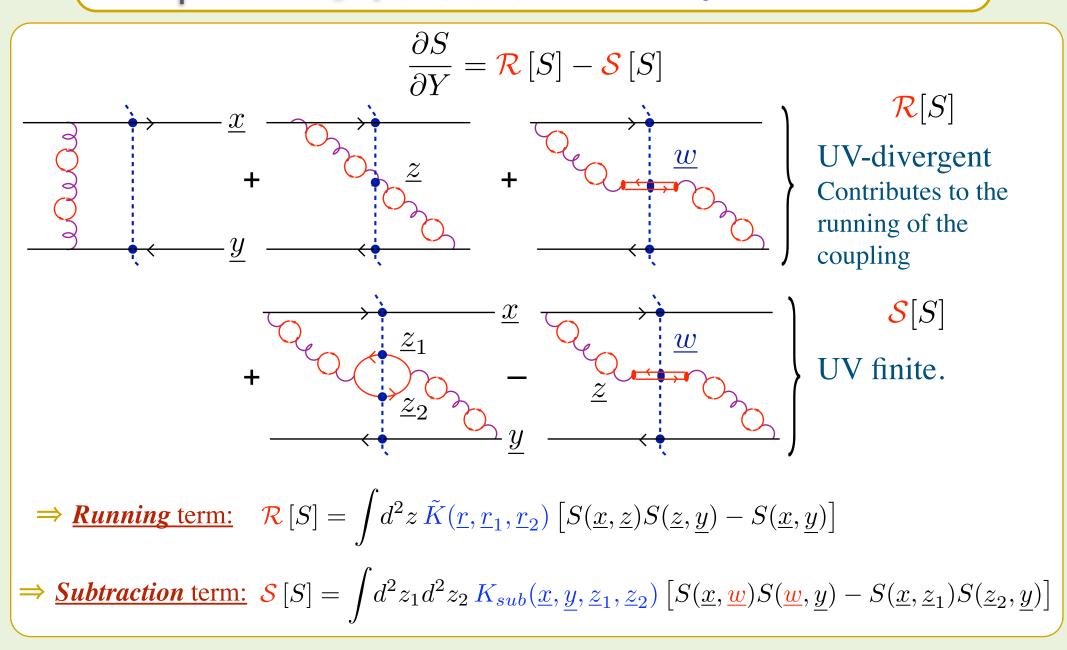

⇒ Leading log (fixed coupling) \underline{x}




 \Rightarrow All orders in $\alpha_s N_f$

$$N_f \longrightarrow -6\pi\beta$$

(running coupling)



New physical channels: quark-antiquark pairs in the final state.

They contain UV divergencies that contribute to the running of the coupling

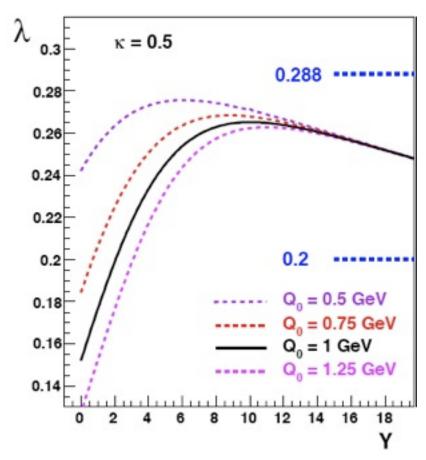
Complete in $\alpha_s N_f$ Evolution JLA-Kovchegov PRD75 125021 (07).

Two different separation schemes: Balitsky's (BAL) and Kovchegov-Weigert's (KW)

Fixed vs Running

⇒ The running of the coupling reduces the speed of the evolution down to values compatible with experimental data (JLA PRL 99 262301 (07)):

$$\frac{\partial S}{\partial Y} = \mathcal{R}\left[S\right] - \mathcal{S}\left[S\right]$$


$$\lambda = \frac{d \ln Q_s^2(\underline{Y})}{d\underline{Y}}$$

LL evolution:

$$\lambda^{LL} \approx 4.8 \, \alpha_s$$

DIS data:

$$\lambda^{DIS} \approx 0.288$$

⇒ Fits to inclusive DIS e+p structure functions & reduced x-section

$$F_2(x,Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} (\sigma_T + \sigma_L) \qquad \sigma_r(y,x,Q^2) = F_2(x,Q^2) - \frac{y^2}{1 + (1-y)^2} F_L(x,Q^2)$$

 \Rightarrow x-dependence: translational invariant (no b-dependence) running coupling BK using Balitsky's prescription

$$\frac{\partial \mathcal{N}(x,r)}{\partial \ln(x_0/x)} = \int d^2r_1 K^{Bal}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) \left[\mathcal{N}(x,r_1) + \mathcal{N}(x,r_2) - \mathcal{N}(x,r) - \mathcal{N}(x,r_1) \mathcal{N}(x,r_2) \right]$$

$$K^{Bal}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) = \frac{N_c \,\alpha_s(r^2)}{2 \,\pi^2} \left[\frac{r^2}{r_1^2 \,r_2^2} + \frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right]$$

 \Rightarrow Regularization of the coupling:We freeze to a constant, α_{fr} =0.7 in the IR:

$$\alpha_s(r^2) = \frac{12\pi}{(11N_c - 2N_f)\ln\left(\frac{4C^2}{r^2\Lambda_{QCD}}\right)} \quad \text{for } r < r_{fr}, \text{ with } \alpha_s(r_{fr}^2) \equiv \alpha_{fr} = 0.7$$

$$\alpha_s(r^2) = \alpha_{fr} = 0.7$$
 for $r > r_{fr}$ $\Lambda_{QCD} = 0.241 \,\text{GeV}$

⇒ Initial Conditions. Inspired in the GBW and MV models:

A)
$$\mathcal{N}^{GBW}(r, x_0 = 10^{-2}) = 1 - \exp\left[-\left(\frac{r^2 Q_{s0}^2}{4}\right)^{\gamma}\right]$$

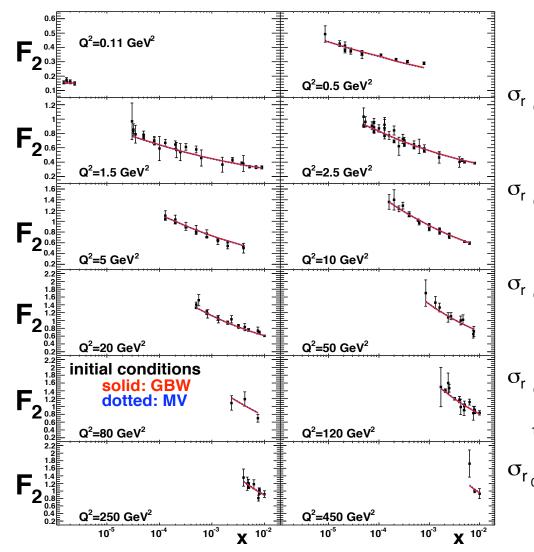
B)
$$\mathcal{N}^{MV}(r, x_0 = 10^{-2}) = 1 - \exp\left[-\left(\frac{r^2 Q_{s0}^2}{4}\right)^{\gamma} \ln\left(\frac{1}{r \Lambda_{QCD}}\right)\right]$$

C) "scaling"
$$\mathcal{N}(r,Y\gg 1) \to \mathcal{N}^{scal}(\tau=r\,Q_s(Y)).$$
 $r\,Q_s(Y)\to r\,Q_{s0}$

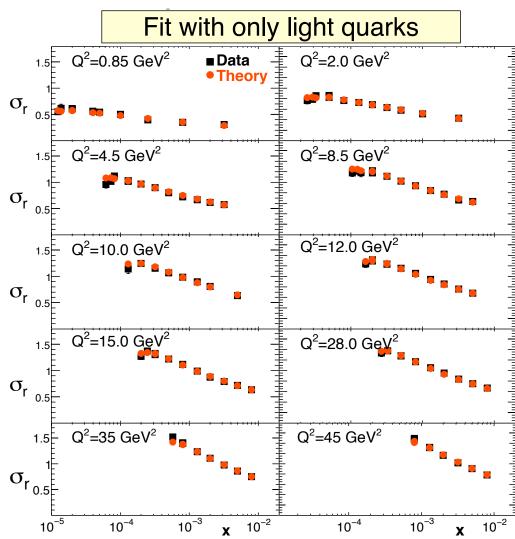
Free parameters: proton saturation scale at $x_0=10^{-2}$, Q_{s0}^2 , and anomalous dimension, γ

⇒ Overall normalization:

$$2\int d\mathbf{b} \to \sigma_0$$


kinematic shift:
$$\tilde{x} = x \left(1 + \frac{4 \, m_f^2}{Q^2} \right)$$

- \Rightarrow 3 (4) free parameters: Normalization, σ_0 , initial saturation scale, Q_{s0}^2 IR parameter, C^2 (anomalous dimension of the i.c. γ)
- \Rightarrow Experimental data: New ZEUS+H1 combined analysis (HERA), NMC (CERN-SPS) and E665 (Fermilab) coll. $x \leq 10^{-2} \quad 0.045 < Q^2 < 50 \, {\rm GeV^2}$


⇒ Fit results

Fits to "OLD" HERA data

Combined HI + ZEUS data

JLA, N. Armesto, J.G. Milhano, C. Salgado Phys.Rev.D80:034031,2009;

JLA, N. Armesto, J.G. Milhano, P Quiroga and C. Salgado arXiv 1012.4408 [hep-ph]

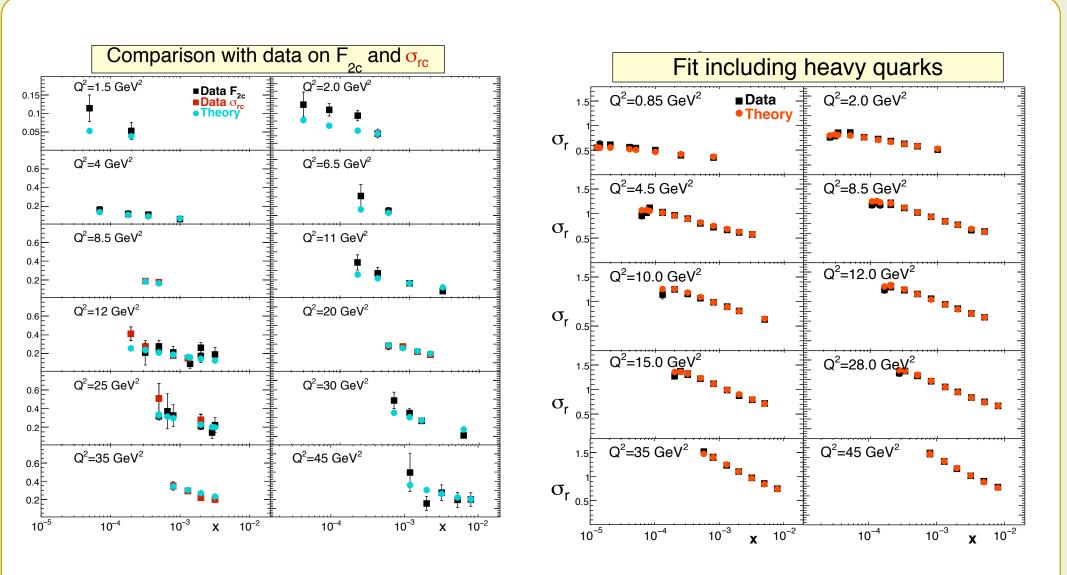
⇒ Fit results

• Fits parameters are stable w.r.t to the fits to older data

	fit	$\frac{\chi^2}{d.o.f}$	Q_{s0}^2	σ_0	γ	C	m_l^2
	GBW						
a	$\alpha_{fr} = 0.7$	1.226	0.241	32.357	0.971	2.46	fixed
a'	$\alpha_{fr} = 0.7 \ (\Lambda_{m_{\tau}})$	1.235	0.240	32.569	0.959	2.507	fixed
b	$\alpha_{fr} = 0.7$	1.264	0.2633	30.325	0.968	2.246	1.74E-2
\mathbf{c}	$\alpha_{fr} = 1$	1.279	0.254	31.906	0.981	2.378	fixed
\mathbf{c}'	$\alpha_{fr} = 1 \ (\Lambda_{m_{\tau}})$	1.244	0.2329	33.608	0.9612	2.451	fixed
d	$\alpha_{fr} = 1$	1.248	0.239	33.761	0.980	2.656	2.212E-2
	MV						
e	$\alpha_{fr} = 0.7$	1.171	0.165	32.895	1.135	2.52	fixed
f	$\alpha_{fr} = 0.7$	1.161	0.164	32.324	1.123	2.48	1.823E-2
g	$\alpha_{fr} = 1$	1.140	0.1557	33.696	1.113	2.56	fixed
h	$\alpha_{fr} = 1$	1.117	0.1597	33.105	1.118	2.47	1.845E-2
h'	$\alpha_{fr} = 1 \ (\Lambda_{m_{\tau}})$	1.104	0.168	30.265	1.119	1.715	1.463E-2

NOTE: Statistical and systematic errors added in quadrature

⇒ Including heavy quarks


- Extend the sum to heavy flavors (b and c) in the dipole model
- Allow for different parameters for the heavy quark contribution and initial conditions

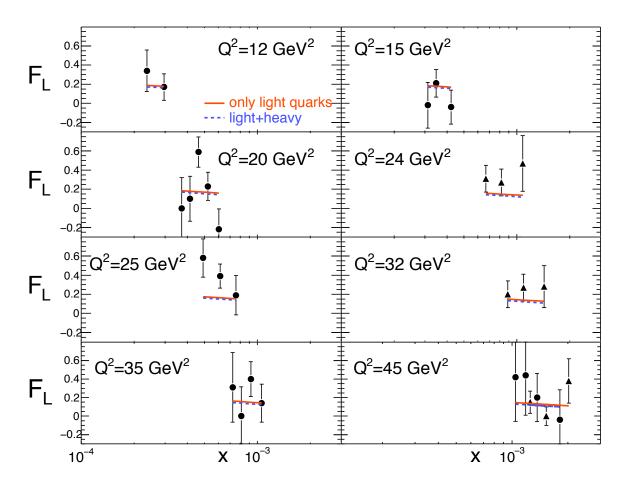
$$\sigma_{T,L}(x,Q^2) = \sigma_0 \sum_{f=u,d,s} \int_0^1 dz \, d\mathbf{r} \, |\Psi_{T,L}^f(e_f,m_f,z,Q^2,\mathbf{r})|^2 \mathcal{N}^{light}(\mathbf{r},x)$$
$$+ \sigma_0^{heavy} \sum_{f=c,b} \int_0^1 dz \, d\mathbf{r} \, |\Psi_{T,L}^f(e_f,m_f,z,Q^2,\mathbf{r})|^2 \mathcal{N}^{heavy}(\mathbf{r},x) \, .$$

 For consistency, we consider a variable flavor number scheme for the running of the coupling

$$\alpha_{nf}(r^2) = \frac{4\pi}{\beta_{0,nf} \ln\left(\frac{4C^2}{r^2\Lambda^2}\right)} \qquad \alpha_{s,n_f-1}(r_{\star}^2) = \alpha_{s,n_f}(r_{\star}^2) \qquad r_{\star}^2 = 4C^2/m_f^2$$

⇒ Fits with heavy quarks

No constraints to b contribution from present data...

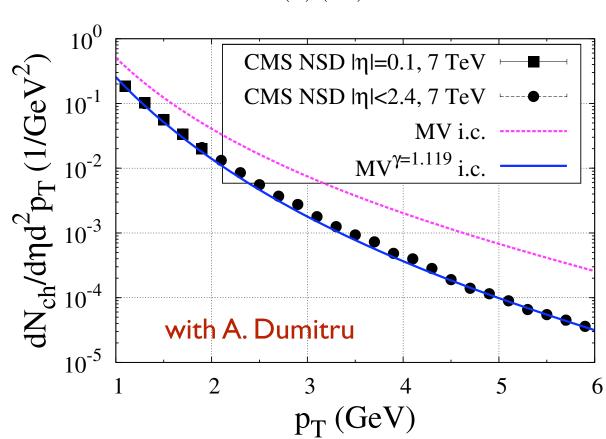

⇒ Fits with heavy quarks

	fit	$\frac{\chi^2}{d.o.f}$	Q_{s0}^2	σ_0	γ	Q_{s0c}^2	σ_{0c}	γ_c	C	m_l^2
	GBW									
a	$\alpha_{fr} = 0.7$	1.269	0.2294	36.953	1.259	0.2289	18.962	0.881	4.363	fixed
a'	$\alpha_{fr} = 0.7 (\Lambda_{m_{\tau}})$	1.302	0.2341	36.362	1.241	0.2249	20.380	0.919	7.858	fixed
b	$\alpha_{fr} = 0.7$	1.231	0.2386	35.465	1.263	0.2329	18.430	0.883	3.902	1.458E-2
\mathbf{c}	$\alpha_{fr} = 1$	1.356	0.2373	35.861	1.270	0.2360	13.717	0.789	2.442	fixed
d	$\alpha_{fr} = 1$	1.221	0.2295	35.037	1.195	0.2274	20.262	0.924	3.725	1.351E-2
	MV									
e	$\alpha_{fr} = 0.7$	1.395	0.1673	36.032	1.355	0.1650	18.740	1.099	3.813	fixed
f	$\alpha_{fr} = 0.7$	1.244	0.1687	35.449	1.369	0.1417	19.066	1.035	4.079	1.445E-2
g	$\alpha_{fr} = 1$	1.325	0.1481	40.216	1.362	0.1378	13.577	0.914	4.850	fixed
h	$\alpha_{fr} = 1$	1.298	0.156	37.003	1.319	0.147	19.774	1.074	4.355	1.692E-2

- Larger transverse "size" of the light contribution $\sigma_0^{light} > \sigma_0^{charm}$
- chi²/dof improve significantly if charm data excluded in its calculation

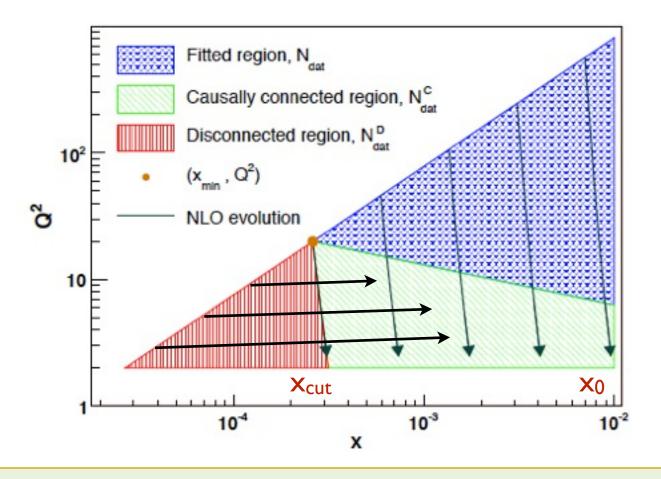
⇒ Fits with heavy quarks

• In both cases, i.e. only light or light+heavy quarks, a good description of FL data (not included in the fits) is obtained

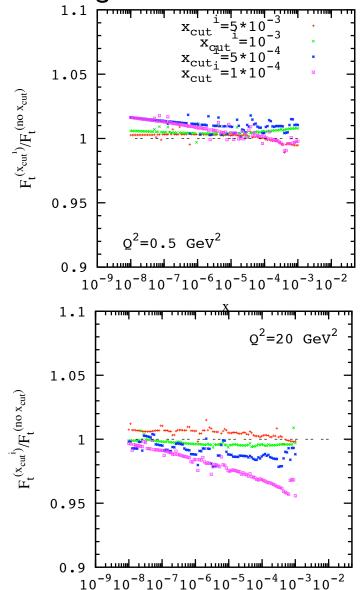


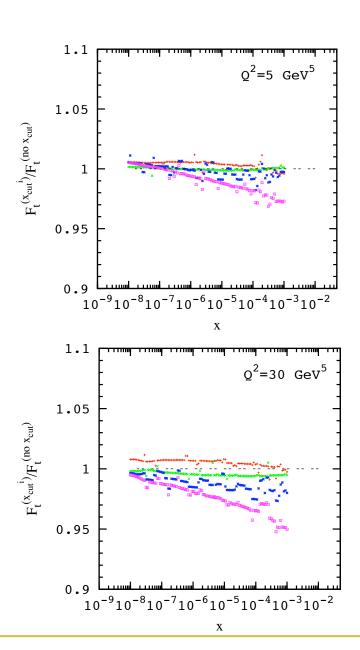
• Steeper than MV (i.e gamma>I) preferred by the fits are needed to describe the p+p spectra measured at the LHC. kt-factorization+KKP fragmentation

$$\mathcal{N}^{MV}(r, x_0 = 10^{-2}) = 1 - \exp\left[-\left(\frac{r^2 Q_{s0}^2}{4}\right)^{\gamma} \ln\left(\frac{1}{r \Lambda_{QCD}}\right)\right] \qquad \gamma = 1.119$$


$$\frac{d\sigma^{A+B\to g}}{dy\,d^2p_t\,d^2R} = \kappa \,\frac{2}{C_F} \frac{1}{p_t^2} \int^{p_t} \frac{d^2k_t}{4} \int d^2b\,\alpha_s(Q)\,\varphi(\frac{|p_t + k_t|}{2}, x_1; b)\,\varphi(\frac{|p_t - k_t|}{2}, x_2; R - b)$$

unintegrated gluon distributions
$$\varphi(k,x,b) = \frac{C_F}{\alpha_s(k) (2\pi)^3} \int d^2\mathbf{r} \ e^{-i\mathbf{k}\cdot\mathbf{r}} \, \nabla_{\mathbf{r}}^2 \mathcal{N}_G(r,Y = \ln(x_0/x),b)$$


⇒ Delineating the saturation boundary (G Milhano, P. Quiroga and J Rojo):

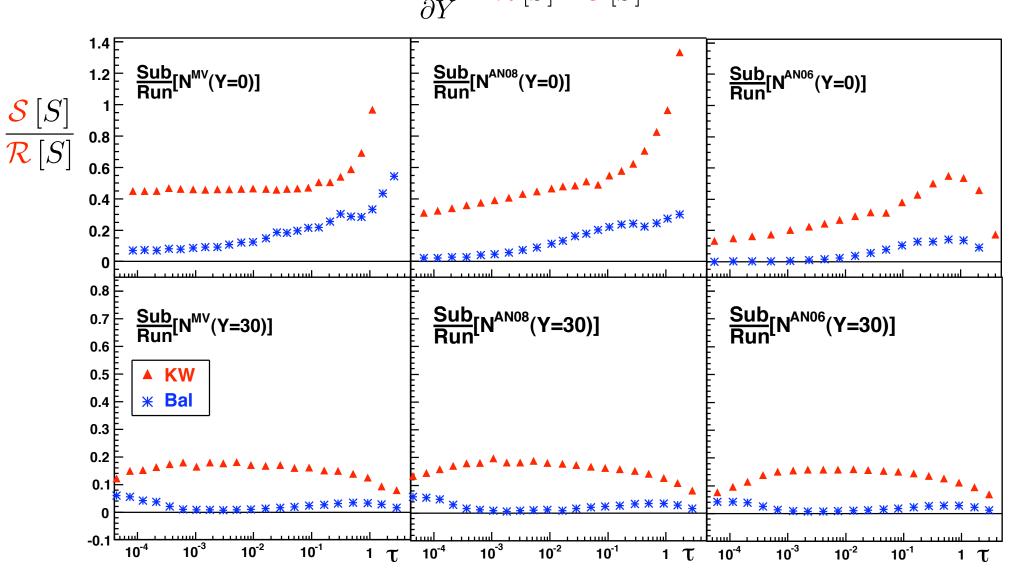

- NLO DGLAP analysis exhibit deviations after systematic exclusion of low-Q² regions ("saturation cuts") from the fits (Caola, Forte, Rojo)
- Analogous exercise with rcBK:
 - Systematically exclude high-x regions from the fits $(x>x_{cut}>x_0=10^{-2})$
 - Compare with fits including the region ($x>x_{cut}=10^{-2}$)

⇒ Delineating the saturation boundary (G Milhano, P. Quiroga and J Rojo):

- Small deviations found. They indicate that other relevant physics (DGLAP, NP...?) not included in our rcBK approach is relevant in the excluded region. They increase with
 - decreasing x_{cut}
 - increasing Q²

Summary

- Running coupling BK evolution successfully describes new combined H1+ZEUS data on reduced cross sections at small-x
- Fit parameters are stable after the inclusion of the new data
- Charm contribution to the cross section can be accounted for, albeit allowing a smaller radius for the charm distribution in the proton than for light ones
- Steeper than MV initial conditions preferred by the fits also provide a better description of p+p yields measured at the LHC
- Systematic exploration of the saturation boundary ongoing
- Next: analogous global fits for nuclear data, include NLO photon impact factor, realistic b-dependence...


Parametrizations of the proton-dipole amplityde available at http://www-fp.usc.es/phenom/software.html

Thanks!

BACK UP SLIDES

- The dominant contribution to the evolution is given by the running term
- Balitsky's separation scheme minimizes the role of the subtraction term w.r.t. to KW's one

$$\frac{\partial S}{\partial Y} = \mathcal{R}\left[S\right] - \mathcal{S}\left[S\right]$$

